下载并导入mnist数据集

首先,利用input_data.py来下载并导入mnist数据集。在这个过程中,数据集会被下载并存储到名为"MNIST_data"的目录中。

import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

其中mnist是一个轻量级的类,其中以Numpy数组的形式中存储着训练集、验证集、测试集。

进入一个交互式的TensorFlow会话

TensorFlow实际上对应的是一个C++后端,TensorFlow使用会话(Session)与后端连接。通常,我们都会先创建一个图,然后再在会话(Session)中启动它。而InteractiveSession给了我们一个交互式会话的机会,使得我们可以在运行图(Graph)的时候再插入计算图,否则就要在启动会话之前构建整个计算图。使用InteractiveSession会使得我们的工作更加便利,所以大部分情况下,尤其是在交互环境下,我们都会选择InteractiveSession。

import tensorflow as tf sess = tf.InteractiveSession()

利用占位符处理输入数据

关于占位符的概念,官方给出的解释是“不是特定的值,而是可以在TensorFlow运行某一计算时根据该占位符输入具体的值”。这里也比较容易理解。

x = tf.placeholder("float", shape=[None,784])

x代表的是输入图片的浮点数张量,因此定义dtype为"float"。其中,shape的None代表了没有指定张量的shape,可以feed任何shape的张量,在这里指batch的大小未定。一张mnist图像的大小是2828,784是一张展平的mnist图像的维度,即2828=784。

y_ = tf.placeholder(
        		

延伸阅读

学习是年轻人改变自己的最好方式-Java培训,做最负责任的教育,学习改变命运,软件学习,再就业,大学生如何就业,帮大学生找到好工作,lphotoshop培训,电脑培训,电脑维修培训,移动软件开发培训,网站设计培训,网站建设培训学习是年轻人改变自己的最好方式