前面我们了解了决策树和adaboost的决策树墩的原理和实现,在adaboost我们看到,用简单的决策树墩的效果也很不错,但是对于更多特征的样本来说,可能需要很多数量的决策树墩
或许我们可以考虑使用更加高级的弱分类器,下面我们看下CART(Classification And Regression Tree)的原理和实现吧
CART也是决策树的一种,不过是满二叉树,CART可以是强分类器,就跟决策树一样,但是我们可以指定CART的深度,使之成为比较弱的分类器
CART生成的过程和决策树类似,也是采用递归划分的,不过也存在很多的不同之处
数据集:第一列为样本名称,最后一列为类别,中间为特征
human constant hair true false false false true false mammal
python cold_blood scale false true false false false true reptile
salmon cold_blood scale false true false true false false fish
whale constant hair true false false true false false mammal
frog cold_blood none false true false sometime true true amphibious
lizard cold_blood scale false true false false true false reptile
bat constant hair true false true false true false mammal
cat constant skin true false false false true false mammal
shark cold_blood scale true false false true false false fish
turtle cold_blood scale false true false sometime true false reptile
pig constant bristle true false false false true true mammal
eel cold_blood scale false true false true false false fish
salamander cold_blood none false true false sometime true true amphibious

