因未测试其他作者的算法时间和效率,本文不敢自称是最快的,但是速度也可以肯定说是相当快的,在一台I5机器上占用单核的资源处理 3000 * 2000的灰度数据用时约 20ms,并且算法和核心的大小是无关的,即所谓的o(1)算法。
在实现本算法之前,也曾经参考何凯明在暗通道去雾时提出的一篇参考论文中的算法: STREAMING MAXIMUM-MINIMUM FILTER USING NO MORE THAN THREE COMPARISONS PER ELEMENT ,这篇文章所描述的过程也是o(1)的,速度也相当快,不过还是不够快。
我曾经自己构思了一个想法,也是基于行列分离的,在速度上比上文的代码又要快,并且也是o(1)算法,但是算法速度和图片的内容有关,比如对一个图进行了一次算法后,再次对结果执行相同的算法,可能后一次就要慢很多,这和我改进的算法本身有关系,但是这种情况是很少见的。
本文所要介绍的算法也是在很久以前就看到过的,但是一直没有引起我的重视,其对应的参考论文是 A fast algorithm for local minimum and maximum filters on rectangular and octagonal kernels ,当时觉得论文的实现起来可能没有我自己构思的快,也就没有去深究。
论文的实现步骤也是基于行列分离的,即先进行行方向的一维运算,然后再对结果进行列方向的一维计算,具体的理论描述大家去研究论文吧。
那其实论文的核心就是下面这个图。
延伸阅读
- ssh框架 2016-09-30
- 阿里移动安全 [无线安全]玩转无线电——不安全的蓝牙锁 2017-07-26
- 消息队列NetMQ 原理分析4-Socket、Session、Option和Pipe 2024-03-26
- Selective Search for Object Recognition 论文笔记【图片目标分割】 2017-07-26
- 词向量-LRWE模型-更好地识别反义词同义词 2017-07-26
- 从栈不平衡问题 理解 calling convention 2017-07-26
- php imagemagick 处理 图片剪切、压缩、合并、插入文本、背景色透明 2017-07-26
- Swift实现JSON转Model - HandyJSON使用讲解 2017-07-26
- 阿里移动安全 Android端恶意锁屏勒索应用分析 2017-07-26
- 集合结合数据结构来看看(二) 2017-07-26
