Tensorflow学习笔记3:TensorBoard可视化学习
TensorBoard简介
Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph、定量指标图以及附加数据。大致的效果如下所示,
TensorBoard工作机制
TensorBoard 通过读取 TensorFlow 的事件文件来运行。TensorFlow 的事件文件包括了你会在 TensorFlow 运行中涉及到的主要数据。关于TensorBoard的详细介绍请参考TensorBoard:可视化学习。下面做个简单介绍。
Tensorflow的API中提供了一种叫做Summary的操作,用于将Tensorflow计算过程的相关数据序列化成字符串Tensor。例如标量数据的图表scalar_summary或者梯度权重的分布histogram_summary。
通过tf.train.SummaryWriter来将序列化后的Summary数据保存到磁盘指定目录(通过参数logdir指定)。此外,SummaryWriter构造函数还包含了一个可选参数GraphDef,通过指定该参数,可以在TensorBoard中展示Tensorflow中的Graph(如上图所示)。
大致的代码框架如下所示:
延伸阅读
- ssh框架 2016-09-30
- 阿里移动安全 [无线安全]玩转无线电——不安全的蓝牙锁 2017-07-26
- 消息队列NetMQ 原理分析4-Socket、Session、Option和Pipe 2024-03-26
- Selective Search for Object Recognition 论文笔记【图片目标分割】 2017-07-26
- 词向量-LRWE模型-更好地识别反义词同义词 2017-07-26
- 从栈不平衡问题 理解 calling convention 2017-07-26
- php imagemagick 处理 图片剪切、压缩、合并、插入文本、背景色透明 2017-07-26
- Swift实现JSON转Model - HandyJSON使用讲解 2017-07-26
- 阿里移动安全 Android端恶意锁屏勒索应用分析 2017-07-26
- 集合结合数据结构来看看(二) 2017-07-26
学习是年轻人改变自己的最好方式